
Learning Riemannian Metrics for Interpolating
Animations

Anonymous authors

No Institute Given

Abstract. We leverage a family of Riemannian metrics to upsample low frame
rate animations for creative design and compression applications in computer
graphics. Our method interpolates animated characters’ bone orientations along
various geodesics from a family of invariant Riemannian metrics on a product of
SO(3) manifolds. For compression, an optimization step selects the best-fitting
metric. We show that our approach outperforms existing techniques.

1 Introduction

Upsampling for Creative Design Character animation in 3D graphics involves posing
a skeletal rig—an articulated hierarchy of bones—across a sequence of frames. To this
aim, animators define a sparse set of keyframes, specifying the position and orientation
of bones at selected times, and then interpolate to generate the full motion [7]. However,
standard interpolation methods such as linear interpolation, SLERP [12] or Squad [13]
degrade in quality when keyframes are sparse, requiring manual corrections or addi-
tional keyframes. Recent learning-based approaches improve interpolation fidelity but
depend on large datasets and do not generalize well across rig structures [11, 15].
These limitations motivate the search for alternative interpolation strategies that pro-
vide higher-quality results under sparse sampling while remaining data-efficient and
rig-agnostic.

Upsampling for Compression Upsampling is also critical for compression, as anima-
tions often demand significant storage. Compressing animations into a small number of
keyframes, with interpolation recovering the full sequence, is an effective strategy—but
hinges on the quality of the interpolation. Upsampling techniques are thus essential
to reduce memory and bandwidth requirements in applications such as games, virtual
production, and web delivery.

Contributions We apply geodesic interpolation techniques to animation upsampling
and compression. We model the animated character’s pose space as the Lie group
SO(3)B , with B the number of bones, and equip it with invariant Riemannian met-
rics. We explore how varying the metric influences interpolation quality and motion
characteristics, and how this can be used for creative control and data compression.

2 Anonymous authors

GT SlerpPC LC Ours

Fig. 1: Comparison of traditional interpolation techniques with the proposed geodesic
interpolations. From left to right: ground truth animation, piecewise constant, linear
(cartesian), spherical linear (slerp), and our geodesic interpolation. In this frame our
geodesic interpolation most closely matches the original.

2 Methods

Consider an animation of a character with B bones. Each bone is associated with a
joint that has some 3D orientation, represented as a rotation matrix R ∈ SO(3), where
SO(3) is the special orthogonal group in 3D, with Lie algebra denoted so(3). Hence,
the set of all possible poses of this character is the power Lie group SO(3)B = SO(3)×
· · · × SO(3), which we call the pose Lie group (see Figure 2b).

We equip this Lie group with a Riemannian metric <,>, that is by a collection of
inner-products on the tangent spaces that varies smoothly with the base point. We do so
by equipping each of the SO(3) copies with a different invariant Riemannian metric. An
invariant metric on a connected Lie group is fully described by the matrix Z of its inner-
product on its Lie algebra, and whether it is a left- or a right- invariant metric. Once
the pose Lie group is equipped with a Riemannian metric, we can consider geodesics
on it, that is the generalization of the straight lines from vector spaces to manifolds, see
Figure 2a. We refer to [9] for additional details on Riemannian geometry on Lie groups.

Goal: Consider a ground truth animation AG, see Figure 3 (left) with F frames, repre-
sented as a sequence of F poses on the pose Lie group, i.e., AG(t) ∈ SO(3)B for each
time t ∈ [t1, tF]. Our goal is to learn the Riemannian metric <,> on SO(3)B that best
describes the animated character’s motion in AG, in the following sense: the animation
AG can be downsampled (compressed) to a lower frame rate F ′, such that the geodesic
interpolation with metric <,> brings it back to its original (higher) frame rate F with
the highest accuracy. Once <,> is learned, it can be used for creative design in digital
creation, including extracting perceptual insights on the character’s motion in AG, or
for compression.

Notations: The metric <,> is the result of an optimization problem that depends on
AG and F ′, for which we introduce notations. Consider a sampling rate 0 < s < 1.
We call initial animation, and denote it AI , the animation obtained after uniformly
downsampling the ground truth animation AG of frame rate F to the lower frame rate
F ′ = sF , see Figure 3 (pink). For example, if we have a ground truth animation of
F = 60 frames, and a sampling rate of s = 0.2, the initial animation will have F ′ = 12
frames, each 5 frames apart in the ground truth. We call interpolated or upsampled an-
imation, and denote it AU , the animation obtained by upsampling the initial animation
AI back up to the ground truth frame rate F , see Figure 3 (purple). We note that AU

Learning Riemannian Metrics for Interpolating Animations 3

depends on the interpolation technique used: in particular, in the case of a geodesic
interpolation, AU depends on the choice of metric <,>. Reformulated using these no-
tations, our goal is to learn the metric <,> so that AU is as close as possible to AG,
according to a quality score Q. Figure 3 shows our pipeline.

uv

γ(t).
γ(t)

lie algebra

tangent vector

t

geodesic

(a) For ease of explanation, we represent SO(3)
as a sphere. At the identity of the group, we define
an inner-product for all vectors u, v in the tangent
space (green). The vector γ̇(t) in the tangent space
at Ri (purple) is the velocity of the parameterized
curve going to Rj . The geodesic curve γ(t) (or-
ange) is the shortest path between two rotations
Ri and Rj . In this example we interpolate 3 in-
between rotations along the geodesic (black dots).

× · · ·× ×
1 1 1

2 2 2

B

(b) Changing α, β values can be thought of
as deforming the group. The distance be-
tween the same 2 rotations changes. Our
Pose Lie group is a product of manifolds,
one for each bone.

(c) We verify experimentally that updating
α, β leads to different geodesics, and thus
different trajectories despite the same start
and end states.

Fig. 2: Explaining how a geodesic on a manifold can interpolate trajectories.

2.1 Riemannian Metric Learning

We propose to learn the metric <,> that most accurately describes the motion of a
given animated character. We restrict our optimization to a set of invariant Riemannian
metrics on SO(3)B , which provides a convenient parameterization of <,>.

Metric Parameterization Consider one SO(3) within the power Lie group SO(3)B .
We can parameterize a Riemannian metric on the Lie group SO(3) by an inner product
matrix Z on its Lie algebra.The matrix Z must be symmetric positive definite, meaning
it can be decomposed into Z = PTDP , where D is a diagonal matrix whose values
are strictly positive, and P is orthogonal. We will restrict our investigation to specific
matrices Z:

Z =

1 0 0
0 α 0
0 0 β

 , with α, β > 0, (1)

on each component SO(3) within the Pose Lie group SO(3)B . In other words, we re-
strict ourselves to matrices Z where the orthogonal component P is taken to be the
identity matrix and learn the optimal α, β values for each matrix Z corresponding to
each SO(3) within the power SO(3)B , in order to best reconstruct the animation. Our
metric on SO(3)B is thus parameterized by the set of parameters: {α1, β1, ..., αB , βB},

4 Anonymous authors

input ground truth
animation

uniformly sample to get
initial animation

apply animation
to rig

Riemannian metric learning with TPE
generate

new frames for
interpolated
animation

 choose

compute quality
score

geodesic
interpolation

with metric

Fig. 3: Pipeline of our method. Given an animation, we downsample it, and upsample
new in-between frames using a search sweep for optimal parameters. Then we apply
the animation to the rig and quantitatively and qualitatively analyse the results.

written {α, β} for short. We also add a categorical parameter, called inv, which indi-
cates whether whether we propagate the inner-product Z with left or right translations:
i.e., whether the resulting metric <,> is left- or right- invariant. This parameterization
does not cover every metric on SO(3)B ; yet, it encodes a 4B-dimensional family of
metrics where we can perform metric learning.

Geodesic Interpolation Consider a bone b and two frames i, j that are consecutive in
the initial animation AI and j − i + 1 frames apart in the ground-truth animation AG,
i.e., AI(b, i) = AG(b, i) = Ri ∈ SO(3) and AI(b, j) = AG(b, j) = Rj ∈ SO(3).
Given a metric <,>, we compute the geodesic γ on SO(3) such that γ(0) = Ri and
γ(1) = Rj and the energy E(γ) measured with <,> is minimal according to the
definition of a geodesic. The main challenge is to compute the initial tangent vector
u0 = γ̇(0) required to shoot from γ(0) to γ(1). This requires to numerically invert the
Exp map defined in the previous section, i.e., solving the optimization problem:

u0 = argmin
u∈TRi

SO(3)

∥ExpRi
(u)−Rj∥2. (2)

The tangent vector u0 then yields values of AU between frames i and j as: AU (b, t) =
ExpRi

(t.u0) for t ∈ [0, 1]. We observe that we do not have a closed form expression
for the interpolating geodesic, which is instead computed via numerical integration and
optimization.

Optimization Criteria: Quality Metrics The upsampled animation AU is obtained by
geodesic interpolation, which depends on the invariant Riemannian metric <,> that is
itself parameterized by α, β and inv. Thus, we write AU as a function of α, β,inv:
AU (α, β,inv). We detail here how we find the optimal parameters α, β,inv and
thus the optimal Riemannian metric <,> for digital animations, see Figure 3 (cen-
ter). Consider a quality metric Q that denotes how close the interpolated animation
AU (α, β,inv) is from the ground truth animation AG. We get:

α∗, β∗,inv∗ = argmin
α,β,inv

Q (AU (α, β,inv), AG) , (3)

for α, β ∈ (R∗
+)

B and inv in {left, right}. We will experiment with various
quality metrics Q within this optimization criterion.

Learning Riemannian Metrics for Interpolating Animations 5

Our first quality metric quantifies the difference in position between two bones’
endpoints:

Qloc(b1, b2) = ∥b1 − b2∥2, (4)

where b1 and b2 are the endpoint position of bones 1 and 2.
Our second quality metric quantifies the angle difference in rotation between two

bones:

Qrot(b1, b2) = arccos
[tr(b1bT2)− 1

2

]
, (5)

where in this case b1 and b2 are the rotation matrices of bones 1 and 2 respectively, see
Figure 3 (purple). Our third quality metric Qhyb is a weighted sum of Qloc(b1, b2) and
Qrot(b1, b2). Each of these three quality metrics is defined for a given bone of the rig,
at a given frame. To get the quality scores Q across bones and frames, we sum across
the bones b = 1, . . . , B with or without a weight wb > 0 corresponding to the depth of
that bone in the rig, and we average over all frames in the ground truth animation [14].
Thus, the total quality metric between a pose in the ground truth animation AG and the
upsampled animation AU is:

Q =
1

F

F∑
t=1

B∑
b=1

wbQ̃(AU (b, t), AG(b, t)), (6)

and Q̃ equal to Qloc, Qrot or Qhyb. The dependency on α, β,inv is within the bone
bUt,i of the upsampled animation AU .

Optimization Method: Gradient-Free We introduce the optimization method chosen to
minimize the criterion of Eq. 3 and learn α∗, β∗ and inv ∗. This criterion does not have
a closed form as a function of α, β and inv. Thus, we cannot compute its gradient, nor
leverage any gradient-based optimization methods. Consequently, we propose to rely
on a gradient-free optimization methods: the Tree-Structured Parzen Estimator (TPE).
Tree-Structured Parzen Estimator algorithm [3] is designed to find parameters that op-
timize a given criterion whose gradient is not available. TPE is an iterative process that
uses history of evaluated parameters α, β,inv to create a probabilistic model, which
is used to suggest the next set of parameters α, β,inv to evaluate, until the optimal set
α∗, β∗,inv∗ is reached.

Implementation Our ground truth animations are downloaded motion capture sequences
from Adobe Mixamo at 30 frames per second [1]. All animations are imported to
Blender, which we use to visualize, render, and export animation data [6]. File sizes
are computed as the sum of sizes (in bytes) of exported bone locations and rotations
to NumPy files [2]. The Riemannian metric learning with TPE is performed using
HyperOpt [4], Tune [8] and Wandb to log the results [5].

For cartesian linear interpolation, we linearly interpolate the locations as well as the
rotations in the form of component-wise quaternion interpolation. Blender’s quaternion
interpolation was once implemented this way but was problematic since it can yield
invalid (non-unit) quaternions. Blender has since updated to using a version of spherical
linear interpolation (slerp), which we also compare to.

6 Anonymous authors

During geodesic interpolation on SO(3), we generate new rotation matrices repre-
senting the orientation of each bone at a frame using the implementation of invariant
Riemannian metrics parameterized by α, β,inv and available through the Geomstats
library [10]. In order to compute the quality metrics, we need to recover the new bone
positions b at each frame given orientations R ∈ SO(3) and root bone position. To do
so, we start from the root bone of the rig (e.g. hips) and traverse the tree breadth first,
applying each new rotation to the bones on that “level” of the tree, computing the new
positions, iteratively until we have leaf node (e.g. fingertips) positions.

3 Results

We compare our geodesic interpolations (purple) to the three most commonly used
schemes: piecewise constant (PC, teal), linear cartesian (LC, orange), spherical linear
(slerp, yellow), on 5 different increasingly complex Mixamo animations: Pitching,
Rolling, Punching, Jumping, and Sitting. Our supplemental video contains
the full animations.

GT SlerpPC LC Ours

(a)

GT SlerpPC LC Ours

(b)

GT SlerpPC LC Ours

(c)

GT SlerpPC LC Ours

(d)

Fig. 4: Figure 4a shows our geodesic almost perfectly recreating the pose in frame 24 of
the Sitting animation. Figure 4b shows the entire purple overlay for the Jumping
animation which indicates a high quality reconstruction. Figure 4c shows extremities
like hands are captured more accurately in our method for the Punching animation.
In Figure 4d, we capture the fast Rolling motion in frame 44.

Perceptual Accuracy We visualize and qualitatively compare the accuracy of each in-
terpolation scheme. We present this comparison using a sampling rate of s = 0.3 in
Figs. 4a-4d, while corresponding figures for other sampling rates can be found in the
supplemental materials. Our visualizations show the ground truth animation, with the
interpolation methods layered transparently over to highlight where the interpolation
deviates from the original.

The Pitching animation in Fig. 1 has 24 bones and shows our method working
with animations with a fixed root node. Sitting in Fig. 4a is an example where the
fixed node is in the middle of the armature. Jumping contains vertical motion and

Learning Riemannian Metrics for Interpolating Animations 7

rotations in the legs that are far apart, i.e. differ by a large angle close to pi. Punching
animation in Fig. 4c shows horizontal translations with contacts. For example, it would
be undesirable for an interpolation to miss frames where her feet touch the floor to
create an illusion of floating. Our approach outperforms traditional techniques as it
most accurately interpolates characters within this diversity of animations: displaying a
larger purple overlay in Figs. 4a-4b, effectively capturing extremities (hands and feet) in
Fig. 4c as well as fast motions in Fig. 4d. The Rolling animation is difficult because it
has the complexity of all previous animations. Bones rotations are large and flip upside
down (see Fig. 4d). In this difficult setting, visual inspection shows that our interpolation
performs particularly well.

0.1

Sampling Rate vs Rotation+Location Error

0.50.40.30.2 0.6 0.7 0.8 0.9

0.2

1.0

0.4

0.6

0.8

0.0

our geodesic
piecewise constant
linear (cartesian)
linear (slerp)

sampling rate

error

Fig. 5: As the sampling rate for the
Pitching animation increases, the er-
ror metric Qhyb decreases.

Quantitative Accuracy and Compression In
addition to these perceptual comparison, we
compare the interpolations’ accuracies us-
ing the weighted error Qhyb = 0.5 Qloc +
0.5 Qrot and present it in Fig. 5 for the
Rolling animation. The supplementary
materials show these plots for the 4 other
animations. Our approach presents the low-
est error just in front of slerp’s. Despite the
seemingly small quantitative difference be-
tween these two, we note that Fig. 4d shows
significant perceptually differences. Fig. 5
also allows us to evaluate our method in
terms of compression: we require a lower
sampling rate s to achieve a given interpo-
lation error (or accuracy). Consequently, this

method can decrease the memory required to store animations: our compressed anima-
tion is a factor of s smaller than the ground truth, plus the Bα and Bβ float values. The
supplemental materials provide additional details on compression and exact file size.

Conclusion and Future Work

We presented a method for animation interpolation using geodesics on Riemannian
manifolds where we learn the optimal metric. To our knowledge, this is the first time
that Riemannian metric learning is proposed for computer graphics. We showed that
our method interpolates animations with high accuracy (both perceptually and quan-
titatively) on a variety of different motion capture sequences. Because we are able to
accurately represent a high frame rate animation with very few frames, we achieve a
compression rate that requires digital animators to pose fewer keyframes during the
creation process. Future work will perform further analyses of the metric parameters to
reveal additional meaning and novel semantic intuition behind the motion. Providing
animators full control over the parameters α and β to change the interpolation style
would foster a more interactive exploration. We will do so by integrating our family
of geodesic interpolation into animation software and enable animators to play with
different geodesics in real time.

Bibliography

[1] Adobe: Mixamo (2023), URL https://www.mixamo.com/
[2] et al, C.R.H.: Array programming with NumPy. Nature 585(7825), 357–362 (Sep

2020)
[3] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter

optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems, vol. 24, Curran
Associates, Inc. (2011)

[4] Bergstra, J., Yamins, D., Cox, D.D., et al.: Hyperopt: A python library for opti-
mizing the hyperparameters of machine learning algorithms (2013)

[5] Biewald, L.: Experiment tracking with weights and biases (2020), URL https:
//www.wandb.com/, software available from wandb.com

[6] Community, B.O.: The Free and Open Source 3D Creation Suite. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam (2023), URL http://www.
blender.org

[7] Haarbach, A., Birdal, T., Ilic, S.: Survey of higher order rigid body motion interpo-
lation methods for keyframe animation and continuous-time trajectory estimation.
In: 2018 International Conference on 3D Vision (3DV), pp. 381–389, IEEE (2018)

[8] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune:
A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118 (2018)

[9] Milnor, J.: Curvatures of left invariant metrics on lie groups (1976)
[10] Miolane, N., Guigui, N., Brigant, A.L., Mathe, J., Hou, B., Thanwerdas, Y.,

Heyder, S., Peltre, O., Koep, N., Zaatiti, H., Hajri, H., Cabanes, Y., Gerald, T.,
Chauchat, P., Shewmake, C., Brooks, D., Kainz, B., Donnat, C., Holmes, S., Pen-
nec, X.: Geomstats: A python package for riemannian geometry in machine learn-
ing. Journal of Machine Learning Research (2020)

[11] Oreshkin, B.N., Valkanas, A., Harvey, F.G., Ménard, L.S., Bocquelet, F., Coates,
M.J.: Motion in-betweening via deep δ-interpolator. IEEE Transactions on Visu-
alization and Computer Graphics pp. 1–12 (2023)

[12] Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of the
12th annual conference on Computer graphics and interactive techniques, pp. 245–
254 (1985)

[13] Shoemake, K.: Quaternion calculus and fast animation, computer animation: 3-d
motion specification and control. Siggraph (1987)

[14] Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., Shao, L.: Deep 3d hu-
man pose estimation: A review. Computer Vision and Image Understanding 210,
103225 (2021)

[15] Zhang, X., van de Panne, M.: Data-driven autocompletion for keyframe animation.
In: Proceedings of the 11th Annual International Conference on Motion, Interac-
tion, and Games, pp. 1–11 (2018)

https://www.mixamo.com/
https://www.wandb.com/
https://www.wandb.com/
http://www.blender.org
http://www.blender.org

	Learning Riemannian Metrics for Interpolating Animations

