Learning Riemannian Metrics for Interpolating
Animations

Sarah Kushner!+2, Vismay Modi!, and Nina Miolane?

! University of Toronto, Ontario, Canada {sak,vismay}@cs.toronto.edu
2 UC Santa Barbara, California, USA ninamiolane@ucsb.edu

Abstract. We leverage a family of Riemannian metrics to upsample low frame
rate animations for creative design and compression applications in computer
graphics. Our method interpolates animated characters’ bone orientations along
various geodesics from a family of invariant Riemannian metrics on a product of
SO(3) manifolds. For compression, an optimization step selects the best-fitting
metric. We show that our approach outperforms existing techniques.

1 Introduction

Upsampling for Creative Design Character animation in 3D graphics involves posing
a skeletal rig—an articulated hierarchy of bones—across a sequence of frames. To this
end, animators define a sparse set of keyframes, specifying the position and orientation
of bones at selected times, and then interpolate to generate the full motion [6]. However,
standard interpolation methods such as linear interpolation, SLERP [[12]] or Squad [[13]]
degrade in quality when keyframes are sparse, requiring manual corrections or addi-
tional keyframes. Recent learning-based approaches improve interpolation fidelity but
depend on large datasets and do not generalize well across rig structures [[11} [15].
These limitations motivate the search for alternative interpolation strategies that pro-
vide higher-quality results under sparse sampling while remaining data-efficient and
rig-agnostic.

Upsampling for Compression Upsampling is also critical for compression, as anima-
tions often demand significant storage. Compressing animations into a small number of
keyframes, with interpolation recovering the full sequence, is an effective strategy — but
hinges on the quality of the interpolation. Upsampling beyond the original frame rate
allows animators to then create an animation curve with an arbitrarily high frame rate.
Thus, there is a motivation for researching new upsampling techniques that can achieve
high accuracy in recovering original animations and even enhance them by increasing
their original frame rate.

Contributions We apply geodesic interpolation techniques to animation upsampling
and compression. We model the animated character’s pose space as the Lie group
SO(3)B , with B the number of bones, and equip it with invariant Riemannian met-
rics. We explore how varying the metric influences interpolation quality and motion
characteristics and how this can be used for creative control and data compression.

2 S. Kushner et al.

Slerp Ours

1 31 1 N1 Wt

Fig. 1: Comparison of traditional interpolation techniques with the proposed geodesic
interpolations. From left to right: ground truth animation, piecewise constant, linear
(cartesian), spherical linear (slerp), and our geodesic interpolation. In this frame our
geodesic interpolation most closely matches the original.

2 Methods

We introduce elements of Riemannian geometry and Lie groups.

2.1 Manifolds and Riemannian Metrics

Lie theory and Riemannian geometry provide mathematics to precisely define the poses
of animation characters, specifically the rotation of each joint of a character. We refer
the reader to [5] for mathematical details. We will represent the space of possible an-
imated character poses as a Lie group equipped with a Riemannian metric. We define
these concepts here.

Definition 1 (Riemannian metric). Let M be a d-dimensional smooth connected man-
ifold and T, M be its tangent space at point p € M. A Riemannian metric <,> on M
is a collection of inner products <,>,: TyM x TyM — R on each tangent space
T, M that vary smoothly with p. A manifold M equipped with a Riemannian metric
<, > is called a Riemannian manifold.

A Riemmanian metric <, > provides a notion of geodesic distance dist on M. Let
~: [0,1] — M be a smooth parameterized curve on M with velocity vector at ¢ € [0, 1]
denoted as y; € T',(;)M. The length of -y is defined as L, = fol V< Y5 Ve >~ dt and
the distance between any two points p,q € M is: dist(p,) = inf,.(0)=p,v(1)=¢ L~-
The Riemannian metric also provides the notion of geodesic.

Definition 2 (Geodesic). A geodesic between two points p,q is defined as a curve
which minimizes the energy functional:

1
BO) =5 [<H0A0) >0 m

Curves minimizing the energy E also minimize the length L: geodesics are locally
distance-minimizing paths on the manifold M.

Intuitively, a geodesic is the generalization of straight lines from vector spaces to
manifolds, see Figure[2a] We note that the notion of geodesic depends on the notion of
geodesic distance, and thus on the choice of Riemannian metric on the manifold M.
Different Riemannian metrics yield different geodesics between two given points.

Learning Riemannian Metrics for Interpolating Animations 3

2.2 Lie Groups and Metrics
In the context of animation interpolations, we consider specific manifolds: Lie groups.

Definition 3 (Lie group). A Lie group is a group (G, -) such that G is also a finite
dimensional smooth manifold, and the group and differential structures are compatible,
in the sense that the group law - and the inverse map g — g~ are smooth. Let e
denote the neutral element, or identity of G. The tangent space 1.G of a Lie group at
the identity element e € G is called the Lie algebra of G.

The set of all 3D rotations forms a Lie group. This group is referred to as SO(3),
the special orthogonal group in three dimensions. It is defined as: SO(3) = {R €
M3(R)|RTR = I3,det(R) = 1}, where each element is a 3D rotation matrix R. Its
The Lie algebra is a vector space of dimension 3, which is also called the dimension of
the Lie group SO(3).

Consider an animation of a character with B bones. Each bone is associated with a
joint that has some 3D orientation, represented as a rotation matrix R € SO(3). The
set of all possible poses of this character is the power Lie group SO(3)2 = SO(3) x
-+« x SO(3), which we call the pose Lie group (see Figure .

We equip this Lie group with a Riemannian metric <, >, that is by a collection of
inner-products on the tangent spaces that varies smoothly with the base point. We do
so by equipping each of the SO(3)s with a different invariant Riemannian metric. An
invariant metric on a connected Lie group is fully described by the matrix Z of its inner-
product on its Lie algebra, and whether it is a left- or a right- invariant metric. Once
the pose Lie group is equipped with a Riemannian metric, we can consider geodesics
on it, that is, the generalization of straight lines from vector spaces to manifolds, see
Figure[2a] We refer to [9] for additional details on Riemannian geometry on Lie groups.

Goal: Consider a ground truth animation Ac, see Figure 3| (left) with F' frames, repre-
sented as a sequence of F poses on the pose Lie group, i.e., Ag(t) € SO(3)? for each
time t € [t;,tFp]. Our goal is to learn the Riemannian metric <, > on SO(3)? that best
describes the animated character’s motion in A, in the following sense: the animation
Ag can be downsampled (compressed) to a lower frame rate F”, such that the geodesic
interpolation with metric <, > brings it back to its original (higher) frame rate F* with
the highest accuracy. Once <, > is learned, it can be used for creative design in digital
creation, including extracting perceptual insights on the character’s motion in A, or
for compression.

Notations: The metric <, > is the result of an optimization problem that depends on A¢
and F”, for which we introduce notations. Consider a sampling rate 0 < s < 1. We call
initial animation, and denote it Aj, the animation obtained after uniformly downsam-
pling the ground truth animation A¢ of frame rate F to the lower frame rate F’ = sF,
see Figure [3(frames colored pink). For example, if we have a ground truth animation of
F = 60 frames, and a sampling rate of s = 0.2, the initial animation will have F’ = 12
frames, each 5 frames apart in the ground truth. We call interpolated or upsampled an-
imation, and denote it Ay, the animation obtained by upsampling the initial animation
Ay back up to the ground truth frame rate F', see Figure [3] (frames colored purple). We

4 S. Kushner et al.

note that Ay depends on the interpolation technique used: in particular, in the case of a
geodesic interpolation, Ay depends on the choice of metric <, >. Reformulated using
these notations, our goal is to learn the metric <, > so that Ay is as close as possible to
Ag, according to a quality score Q. Figure [3|shows our pipeline.

(S0(3), (SO(3), Zy)

Zy) (3) (SO(3), Zy)
geodesic lie a]gol)m@ Ry - Ry Ry
; X { :X' Lo X)
— tangent vector g L \'

\ \ ‘ / 7) : (b) Changing «, 3 values can be thought of
e 5
R; R;

A S0(3), Z,

as deforming the group. The distance be-
tween the same 2 rotations changes. Our
(a) For ease of explanation, we represent SO(3) Pose Lie group is a product of manifolds,
as a sphere. At the identity of the group, we define one for each bone.

an inner-product for all vectors w, v in the tangent - G /(R AT
space (green). The vector 'y(t) in the tangent space R v O Z /2 “/{ /t\, I ,/: j\ Q]RZ
at R; (purple) is the velocity of the parameterized

curve going to R;. The geodesic curve v(t) (or- (c) We verify experimentally that updating
ange) is the shortest path between two rotations «, 3 leads to different geodesics, and thus
R; and R;. In this example we interpolate 3 in- different trajectories despite the same start
between rotations along the geodesic (black dots). and end states.

1

Fig. 2: Explaining how a geodesic on a manifold can interpolate trajectories.

2.3 Riemannian Metric Learning

We propose to learn the metric <, > that most accurately describes the motion of a
given animated character. We restrict our optimization to a set of invariant Riemannian
metrics on SO(3)5, which provides a convenient parameterization of <, >.

Metric Parameterization Consider one SO(3) within the power Lie group SO(3)%.
We can parameterize a Riemannian metric on the Lie group SO(3) by an inner product
matrix Z on its Lie algebra.

The matrix Z must be symmetric positive definite, meaning it can be decomposed
as Z = PTDP, where D is a diagonal matrix with strictly positive values and P is
orthogonal. In our work, we restrict Z to a diagonal form:

100
Z=10a0], with a, 8 > 0, 2)
00p

for each component SO(3) within the Pose Lie group SO(3)”. This corresponds to
penalizing displacements along the standard basis directions of the Lie algebra, with
weights 1, o, and 5. A more general symmetric positive definite matrix Z would allow
penalizing arbitrary directions (i.e., different orthonormal bases), but in practice we

Learning Riemannian Metrics for Interpolating Animations 5

input ground truth Riemannian metric learning with TPE apply animation
i i fo generate .
animation 0 /V cho?se* \ e to rig |
H—|—|—|—|—|—|—| a',p geodesic n{A\\ rames for |~
v - interpolation | mte'rpolz?ted !
uniformly sample to get 1By = by||? with metric animation / A\
initial animation compute quality A }—H—H—H—H " ‘ Ri
| —
t _1 score v / \

Fig. 3: Pipeline of our method. Given an animation, we downsample it, and upsample
new in-between frames using a search sweep for optimal parameters. Then we apply
the animation to the rig and quantitatively and qualitatively analyse the results.

found that restricting to a diagonal form yielded comparable performance. Additional
motivation, including computational considerations and software stability, is discussed
in the implementation section.

Our metric on SO(3)? is parameterized by the set: {ay, S, ..., ap, B}, written
{a, B8} for short. We also add a categorical parameter, called inv, which indicates
whether whether we propagate the inner-product Z with left or right translations: i.e.,
whether the resulting metric <, > is left- or right- invariant. This parameterization does
not cover every metric on SO(3)%; yet, it encodes a 4 B-dimensional family of metrics
where we can perform metric learning.

Geodesic Interpolation Consider a bone b and two frames ¢, j that are consecutive in
the initial animation A; and j — 7 4 1 frames apart in the ground-truth animation Ag,
ie, Ar(b,i) = Ag(b,i) = R; € SO(3) and A;(b,j) = Ag(b,j) = R; € SO(3).
Given a metric <, >, we compute the geodesic v on SO(3) such that v(0) = R; and
(1) = R; and the energy F(v) measured with <,> is minimal according to the
definition of a geodesic. The main challenge is to compute the initial tangent vector
up = 4(0) required to shoot from (0) to (1). This requires to numerically invert the
Exp map defined in the previous section, i.e., solving the optimization problem:

up = argmin |[|[Expg (u) — R;|12. 3)
u€TR, SO(3)

The tangent vector ug then yields values of Ay between frames i and j as: Ay (b, t) =
Expg, (t.ug) for t € [0, 1]. We observe that we do not have a closed form expression
for the interpolating geodesic, which is instead computed via numerical integration and
optimization.

Optimization Criteria: Quality Metrics The upsampled animation Ay is obtained by
geodesic interpolation, which depends on the invariant Riemannian metric <, > that is
itself parameterized by «, 5 and inv. Thus, we write Ay as a function of «, 3, inv:
Ay (a, B,1inv). We detail here how we find the optimal parameters «, 8, inv and
thus the optimal Riemannian metric <, > for digital animations, see Figure [3] (cen-
ter). Consider a quality metric @) that denotes how close the interpolated animation
Ay (a, B8,inv) is from the ground truth animation Ag. We get:

a*,ﬂ*,inv* :argminQ(AU(a,,B,inv),Ag), (4)

a,B,inv

6 S. Kushner et al.

for o, 8 € (R%)% and inv in {left, right}. We will experiment with various
quality metrics (Q within this optimization criterion.

Quality metrics compare the differences between bones in the ground truth anima-
tion A and the corresponding bones in the upsampled animation Ay;. Our first quality
metric quantifies the difference in position between two bones’ endpoints:

Quoc(b1,b2) = ||by — ba|?, o

where b; and bs are the endpoint positions of bones 1 and 2.

Our second quality metric quantifies the angle difference in rotation between two
bones:
tr (bl bg) -1

2)

where in this case b; and by are the rotation matrices of bones 1 and 2.

Our third quality metric Qpyp is a weighted sum of Qoc (b1, b2) and Qror (b1, b2).
Each of these three quality metrics is defined for a given bone of the rig, at a given
frame. To get the quality scores () across bones and frames, we sum across the bones
b=1,..., B with or without a weight w; > 0 corresponding to the depth of that bone
in the rig, and we average over all frames in the ground truth animation [[14]. Thus, the
total quality metric between a pose in the ground truth animation A and the upsampled
animation Ay is:

(6)

Qrot(b1,b2) = arccos

B
Q=133 wQAu(b 1), Ac(b, 1)),)

t=1 b=1

|

F
1

and Q equal to Qioc, Qrot OF Qnys. The dependency on «, 8, inv is within the bone
bg ; of the upsampled animation Ay. For all results we use Q,ys.

Optimization Method: Gradient-Free We introduce the optimization method chosen to
minimize the criterion of Eq. and learn o*, 8* and inv *. This criterion does not have
a closed form as a function of o, 5 and inv. Thus, we cannot compute its gradient, nor
leverage any gradient-based optimization methods. Consequently, we propose to rely
on a gradient-free optimization methods: the Tree-Structured Parzen Estimator (TPE).
Tree-Structured Parzen Estimator algorithm [2] is designed to find parameters that op-
timize a given criterion whose gradient is not available. TPE is an iterative process that
uses history of evaluated parameters «, 3, inv to create a probabilistic model, which
is used to suggest the next set of parameters «, 3, inv to evaluate, until the optimal set
a*, B*, inv™ is reached.

Implementation Our ground truth animations are motion capture sequences down-
loaded from Adobe Mixamo at 30 frames per second [1]]. All animations are imported
to Blender, which we use to visualize, render, and export animation data [4]. Blender
provides functionality to manipulate and access animation data such as rig structures,
animation curves, and keyframes using Python scripting, which allows us to auto-
mate importing the initial animation, downsampling it, and exporting the downsampled
keyframes for processing. After saving the keyframes in NumPy files [7], we load the

Learning Riemannian Metrics for Interpolating Animations 7

bone locations and rotation matrices into a script which computes the interpolations.
File sizes are calculated as the sum of the sizes (in bytes) of the exported NumPy files.

For cartesian linear interpolation, we linearly interpolate the locations as well as the
rotations in the form of component-wise quaternion interpolation. Blender’s quaternion
interpolation was once implemented this way but was problematic since it can yield
invalid (non-unit) quaternions. Blender has since updated to using a version of spherical
linear interpolation (slerp), which we also compare to.

Riemannian metric learning with TPE is performed using HyperOpt [3] and
Tune [8]. See the supplementary material for details on the TPE algorithm. During
geodesic interpolation on SO(3), we generate new rotation matrices representing the
orientation of each bone at a frame using the implementation of invariant Riemannian
metrics parameterized by «, 3, inv and available through the Geomstats library [10].
In implementation, we restricted Z to a diagonal form primarily for computational and
numerical reasons. Although a full symmetric positive definite matrix could in princi-
ple allow finer control by penalizing arbitrary directions, earlier experiments using such
matrices did not yield significant improvements in reconstruction quality. Moreover, we
encountered numerical instabilities when working with full matrices in Geomstats at the
time.

To compute quality metrics, we need to recover the new bone positions b at each
frame given the interpolated orientations R € SO(3) and the position of the root bone.
To do so, we start from the root bone of the rig (e.g. hips) and traverse the tree breadth
first, applying each new rotation to the bones on that “level” of the tree, computing the
new positions, iteratively until we have leaf node (e.g. fingertips) positions.

Once we have the interpolated frames for all interpolation schemes also saved in
NumPy files, we then load them back into Blender to be applied to copies of the down-
sampled animation.

3 Results

We compare our geodesic interpolations (purple) to the three most commonly used
schemes: piecewise constant (PC, teal), linear cartesian (LC, orange), spherical linear
(slerp, yellow), on 5 different increasingly complex Mixamo animations: Pitching,
Rolling, Punching, Jumping, and Sitting. Our supplemental video contains
the full animations.

Perceptual Accuracy We visualize and qualitatively compare the accuracy of each in-
terpolation scheme. We present this comparison using a sampling rate of s = 0.3 in
Figs. Balfdd] while the corresponding figures for other sampling rates can be found in
the supplemental materials. Our visualizations show the ground truth animation, with
the interpolation methods layered transparently over to highlight where the interpola-
tion deviates from the original.

The Pitching animation in Fig.[T|has 24 bones and shows our method working
with animations with a fixed root node. Sitting in Fig.[dalis an example where the
fixed node is in the middle of the armature. Jumping contains vertical motion and
rotations in the legs that are far apart, i.e., differ by a large angle close to pi. Punching
animation in Fig. [4c|shows horizontal translations with contacts. For example, it would

8 S. Kushner et al.

PC LC Slerp Ours Slerp Ours

L ‘
(@)

GT PC LC Slerp Ours
N

:
i

1
3

j PC LC Slerp Ours
© (d)

Fig.4: shows our geodesic almost perfectly recreating the pose in frame 24 of
the Sitting animation. shows the entire purple overlay for the Jumping
animation which indicates a high quality reconstruction. shows extremities
like hands are captured more accurately in our method for the Punching animation.

In we capture the fast Ro11ing motion in frame 44.

be undesirable for an interpolation to miss frames where her feet touch the floor to
create an illusion of floating. Our approach outperforms traditional techniques, as it
most accurately interpolates characters within this diversity of animations: displaying a
larger purple overlay in Figs. Balfdb] effectively capturing extremities (hands and feet) in
Fig.[Ac|as well as fast motions in Fig.d} The Ro111ing animation is difficult because it
has the complexity of all previous animations. Bones rotations are large and flip upside
down (see Fig.[d). In this difficult setting, visual inspection shows that our interpolation
performs particularly well.

Quantitative Accuracy and Compression In addition to these perceptual comparisons,
we compare the interpolations’ accuracies using the weighted error Qyp = 0.5 Qioc +
0.5 Qyo¢ and present it in Fig. [5|for the Ro11ing animation. The supplementary ma-
terials show these plots for the 4 other animations. Our approach presents the lowest
error just in front of slerp’s. Despite the seemingly small quantitative difference be-
tween these two, we note that Fig. fd] shows significant perceptual differences. Fig. [3]
also allows us to evaluate our method in terms of compression: we require a lower
sampling rate s to achieve a given interpolation error (or accuracy). Consequently, this
method can decrease the memory required to store animations: Our compressed anima-
tion is a factor of s smaller than the ground truth, plus the Ba and B3 float values. The
supplemental materials provide additional details on compression and exact file size.

Learning Riemannian Metrics for Interpolating Animations 9

4 Conclusion and Future Work

We presented a method for animation in-

S. li Rat Rotati L ti E
ampling Rate vs Rotation+Location Brror terpolation using geodesics on Riemannian

error

10- S . manifolds where we learn the optimal met-
. ﬁ:::r‘”(:rf::::”t ric. To our knowledge, this is the first time
' linear (slerp) that Riemannian metric learning is proposed
06- for computer graphics. We hope that these
\ ideas will inspire other applications in this

" field. We showed that our method interpo-
02- lates animations with high accuracy (both
ool = perceptually and quantitatively) on a vari-
o1 02 03 04 o5 06 o7 08 0o ety of different motion capture sequences.

sampling rate Because we are able to accurately repre-

sent a high frame rate animation with very
few frames, we achieve a compression rate
that requires digital animators to pose fewer
keyframes during the creation process.

Future work will involve a deeper analysis of the metric parameters « and /3 to
better understand how they influence the perceived qualities of motion. By studying the
optimal values o™, 8* learned across different animations, we hope to uncover patterns
that reflect stylistic choices or emotional intent—e.g.., whether higher a values in a
joint correlate with faster, more expressive movement. These insights could not only
offer semantic intuition into motion design but also inform tools that give animators
direct, real-time control over interpolation styles. To that end, we plan to integrate our
geodesic interpolation framework into animation software, allowing users to experiment
interactively with different parameter settings. We are also interested in conducting
perceptual studies to evaluate which interpolations are most appealing or expressive
to animators and viewers.

One can also explore how choice of keyframes impacts interpolation and compres-
sion results. Our experiments uniformly downsample the ground-truth animation. Yet,
with an extremely low sampling rate, the downsampled animation consists of very few
frames which might not capture all important actions. One can explore how a smart
downsampling of the animation improves interpolation quality by ensuring that the most
important frames are kept.

Fig.5: As the sampling rate for the
Pitching animation increases, the er-
ror metric (Qpy decreases.

5 Acknowledgments

Sarah Kushner and Nina Miolane acknowledge funding from the NSF Career 2240158
and the NSF grant 2134241.

(1]
(2]

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(1]

[12]

(13]

[14]

[15]

Bibliography

Adobe: Mixamo (2023), URL https://www.mixamo.com/

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems, vol. 24, Curran
Associates, Inc. (2011)

Bergstra, J., Yamins, D., Cox, D.D., et al.: Hyperopt: A python library for opti-
mizing the hyperparameters of machine learning algorithms (2013)

Community, B.O.: The Free and Open Source 3D Creation Suite. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam (2023), URL http://www.
blender.org

Guigui, N., Miolane, N., Pennec, X.: Introduction to riemannian geometry and
geomtric statistics: from basic theory to implementation with geomstats. Founda-
tions and Trends in Machine Learning (2022)

Haarbach, A., Birdal, T., Ilic, S.: Survey of higher order rigid body motion interpo-
lation methods for keyframe animation and continuous-time trajectory estimation.
In: 2018 International Conference on 3D Vision (3DV), pp. 381-389, IEEE (2018)
Harris, C.R.: Array programming with NumPy. Nature 585(7825), 357-362 (Sep
2020)

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune:
A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118 (2018)

Milnor, J.: Curvatures of left invariant metrics on lie groups (1976)

Miolane, N., Guigui, N., Brigant, A.L., Mathe, J., Hou, B., Thanwerdas, Y.,
Heyder, S., Peltre, O., Koep, N., Zaatiti, H., Hajri, H., Cabanes, Y., Gerald, T,
Chauchat, P., Shewmake, C., Brooks, D., Kainz, B., Donnat, C., Holmes, S., Pen-
nec, X.: Geomstats: A python package for riemannian geometry in machine learn-
ing. Journal of Machine Learning Research (2020)

Oreshkin, B.N., Valkanas, A., Harvey, F.G., Ménard, L.S., Bocquelet, F., Coates,
M.J.: Motion in-betweening via deep §-interpolator. IEEE Transactions on Visu-
alization and Computer Graphics pp. 1-12 (2023)

Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of the
12th annual conference on Computer graphics and interactive techniques, pp. 245—
254 (1985)

Shoemake, K.: Quaternion calculus and fast animation, computer animation: 3-d
motion specification and control. Siggraph (1987)

Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., Shao, L.: Deep 3d hu-
man pose estimation: A review. Computer Vision and Image Understanding 210,
103225 (2021)

Zhang, X., van de Panne, M.: Data-driven autocompletion for keyframe animation.
In: Proceedings of the 11th Annual International Conference on Motion, Interac-
tion, and Games, pp. 1-11 (2018)

https://www.mixamo.com/
http://www.blender.org
http://www.blender.org

	Learning Riemannian Metrics for Interpolating Animations

