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Abstract

We introduce GeomFuM, an open-source Python library for geometry processing and machine
learning on functional maps, a compact and versatile representation for shape analysis and
correspondence. This library provides object-oriented, modular, and tested implementa-
tions for spectral geometry, the study of shapes via the eigendecomposition of geometric
operators, as well as functional maps and related algorithms. It includes tools for comput-
ing and learning functions and operators on geometric shapes and higher-level tasks such
as shape matching, registration, and analysis. GeomFuM provides thoroughly tested object-
oriented implementations and supports vectorized batch processing on multiple computa-
tional backends, including NumPy and PYTORCH. The package integrates functional map
theory with practical pipelines to enable research and development in 3D geometry, ma-
chine learning, geometric deep learning, and beyond. The source code is freely available
under the MIT license at github.com/3diglab/geomfum.
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1 Introduction

Functional maps have become a fundamental tool in geometry processing by encoding cor-
respondences between 3D surfaces as linear operators between function spaces (Ovsjanikov
et al., 2012). Given a pair of shapes X',) and a pointwise correspondence T1o : X — ),
a functional map is a linear operator T4, : L2(X) — L£2())), acting on spaces of square-
integrable functions, defined by the pullback T4;(g) = g o Ti2, for any g € £2()) (Ovs-
janikov et al., 2012). This representation supports a wide range of applications, including
shape matching (Ovsjanikov et al., 2017), registration (Jiang et al., 2023; Cao et al., 2024),
segmentation (Wang et al., 2013), texture transfer (Maggioli et al., 2021) while also enabling
downstream tasks such as shape classification and analysis (Magnet et al., 2023; Huang et al.,
2014). Their algebraic structure integrates naturally with geometric deep learning, facili-
tating learning in non-Euclidean domains (Litany et al., 2017). Beyond traditional 3D shape
analysis, functional maps have been applied to broader matching problems, such as neuron
correspondence and latent space alignment (Fumero et al., 2025), showing their potential
beyond classical shape analysis.

Despite their potential, the adoption of functional maps in machine learning pipelines has
been limited by the absence of a unified and flexible software library. Existing implementa-
tions are often tightly coupled to specific pipelines (Cao et al., 2023; Attaiki and Ovsjanikov,
2023), lack flexibility to generalize across tasks, or provide limited support for integration
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with deep learning frameworks (Magnet et al., 2022). In particular, current tools rarely offer
end-to-end, differentiable pipelines compatible with PYTORCH or similar ecosystems.

GeomFuM addresses this gap with three core objectives:

e Accelerate research in spectral geometry and functional maps through modular, well-
tested components for rapid prototyping and algorithm development;

e Support practical learning-based applications via user-friendly, differentiable pipelines
compatible with modern deep learning frameworks;

e Promote reproducibility and education in geometric processing through examples,
notebooks, and robust software engineering practices such as continuous integration
and code coverage.

2 Implementation

The implementation has three main components: Geometry, Matching, and Learning.

Geometry. GeomFuM provides implementations for fundamental geometric computa-
tions performed on triangular meshes or point clouds, such as normals, tangent frames,
gradient, and Laplace-Beltrami operators (Vallet and Lévy, 2008), as well as the Robust
Laplacian (Sharp and Crane, 2020). These operators enable the accurate and robust surface-
based processing required for downstream tasks. The package includes a variety of functional
descriptors and shape analysis tools, such as the Heat Kernel Signature (HKS) (Ovsjanikov
et al., 2010), Wave Kernel Signature (WKS) (Aubry et al., 2011), and the geodesic approxi-
mation using the Heat Method (Crane et al., 2013). It also supports pre-processing routines
such as Farthest Point Sampling (FPS) and the scalable rematching algorithm (Maggioli
et al., 2025).

Matching. Functional map computation is supported through classic functional maps
optimization (Ovsjanikov et al., 2012) and subsequent works that introduce additional
energies (Magnet and Ovsjanikov, 2021; Ren et al., 2019; Rodola et al., 2017). GEOMFUM
also implements a suite of refinement techniques, including ICP (Ovsjanikov et al., 2012),
ZoomOut (Melzi et al., 2019), Fast Sinkhorn Filters (Pai et al., 2021), Adjoint Bijective
ZoomOut (Vigano and Melzi, 2024), and Neural ZoomOut (Vigano et al., 2025).

Learning. To enable learning-based approaches, GeomFulM integrates learning-based fea-
ture extractors such as DiffusionNet (Sharp et al., 2022), PointNet (Qi et al., 2016) and
point-based transformers (Riva et al., 2024), and differentiable functional maps pipelines as
FMNet (Donati et al., 2022), and RobustFMNet (Cao et al., 2023). These implementations
allow for both supervised and unsupervised learning of correspondences on geometric data.

In Figure 1, we show side by side the visualizations and the associated code for an
example of the usage of GeomFuM to compute a functional map and extract a correspondence
between two shapes. In the example, we select two triangular shapes; however, the structure
of the library allows users to run the same pipeline with any geometrical object.

The implementation is available under MIT license in the GitHub repository at
github.com/3diglab/geomfum with public documentation at geomfum.github.io.
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Figure 1: Visual representation (left) and sample code (right) of the steps in a standard
GeomFuM pipeline: Shapes loading, computation of the Spectrum, Descriptors es-
timation, ZoomOut refinement, and final conversion for point-to-point Matching.

3 Relation to Existing Implementations.

We compare GeomFuM with existing Python packages for the functional maps framework and
related learning pipelines (Table 1).

The most closely related library is PYFM!, built on the work of (Magnet and Ovsjanikov,
2021), which first implemented standard functional map algorithms in Python. While valu-
able as a toolbox for classical functional map routines, it lacks PYTORCH compatibility
and any learning module, omitting key components of modern data-driven methods. Other
subsequent works present implementations based on PYFM (Magnet and Ovsjanikov, 2023;
Magnet et al., 2022). However, these are not integrated into the library, limiting their ac-
cessibility. Other repositories focus on deep functional maps (Litany et al., 2017; Attaiki
and Ovsjanikov, 2023; Cao et al., 2023). FMNET-PYTORCH by (Attaiki and Ovsjanikov,
2023) 2 presents the first PyTorch code for using Deep Functional Map. However, this does
not provide a standalone library, which limits its practical usability due to its unmaintained
status, lack of documentation, and difficulty in integration with other projects.

ULRSM? by (Cao et al., 2023) presents a framework for accelerating the implemen-
tation, training, and validation of data-driven pipelines. This release modularizes data,

1. https://github.com/RobinMagnet/pyFM/
2. https://github.com/pvnieo/FMNet-pytorch
3. https://github.com/dongliangcao/Unsupervised-Learning-of-Robust-Spectral-Shape-Matching/
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network, loss, metric, and other components to make the framework flexible, easy to mod-
ify, and extend. However, it targets only recent learning-based methods, without support
for classical approaches that remain essential, especially in low-data regimes, e.g., statistical
shape analysis (Maccarone et al., 2024).

In contrast, GeomFuM unifies classical and data-driven functional map pipelines in a sin-
gle, modular, and extensible framework. A key advantage is its ability to wrap external
libraries such as Python Optimal Transport (Flamary et al., 2021), Potpourri3D 4, PYFM,
and LibIGL (Jacobson and Panozzo, 2017), enabling extensive computation, rapid feature
addition, and direct comparison of alternative implementations within a common interface.
This flexibility makes GeomFuM a practical standard for the geometry processing community
and a robust platform for research and experimentation.

Aspect PyFM FMNet-pytorch ULRSM GeomFuM
Geometry e Laplacian e Robust Laplacian e Robust Laplacian e Laplacian,
e Robust Laplacian o HKS, e HKS, e Robust Laplacian
e HKS, o WKS o WKS e HKS,
o WKS o Grad e Grad o WKS,
e Grad, o DiffusionNet e DiffusionNet e Grad,
e Heat method e Heat method
e FPS e DiffusionNet,
e PointNet,
e Transformers,
e FPS,
e PoissonSampling
e Rematching
ﬁz‘;‘;};;ngg and e Functional Maps o FMNet e FMNet e Functional Maps,
e ZoomOut, ICP e RobustFMNet e ZoomOut,
o Consistent ZoomOut e ICP
e NeuralZoomOut
e FastSinkhornFilters
o FMNet,
e RobustFMNet
Backend NumPy PyTorch PyTorch NumPy / Torch
CI / Coverage | No CI /- No CI / — No CI / — CI v / 84% (Numpy)

Table 1: Comparison of different libraries concerning algorithms and features.

4 Conclusion and Future works

The GeomFuM Python package equips the machine learning and geometry processing com-
munities with accessible, rigorously designed tools for learning with functional maps on
geometric data. The library combines mathematical rigor in representing functional corre-
spondences with practical usability in modern learning pipelines. In an era of Al-assisted
programming, a well-documented modular design is not only essential for usability but also
empowers intelligent coding tools to generate, complete, and explain workflows more effec-

4. https://github.com/nmwsharp/potpourridd


https://github.com/nmwsharp/potpourri3d

tively. While the library prioritizes flexibility and fidelity to the functional map framework,
ongoing work will focus on improving scalability and performance. Planned extensions in-
clude broader support for graph-based data, statistical analysis tools, and integration with
recent advances in geometric deep learning—further extending the library’s reach across
research and application domains.
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